Standalone Installation
If you already have an existing TigerGraph solution locally, you can try out ML Workbench with your own database using a Docker image and a Mac OS or Linux installer.
Docker image
Docker must be installed and running on your machine.
In the console, run this command:
docker run -it -p 8888:8888 --name mlworkbench -v ~/mlworkbench:/home/tigergraph/save tigergraphml/mlworkbench:1.1.0
This command prints the link to the JupyterLab workbench in a format similar to 127.0.0.1:8888/lab?token=
. Use this link in your browser to access the workbench, which is a customized version of JupyterLab.
If the Docker container is running remotely, open port 8888 on the remote machine to allow the connection. Then replace 127.0.0.1 in the returned address with the remote machine IP address.
|
Mac OS installer
-
Download the installer at this link: Download MLWorkbench-1.1.0-MacOSX-x86_64.sh
-
Open a Terminal window in the folder where the installer was downloaded.
-
Run the command
bash MLWorkbench-1.1.0-MacOSX-x86_64.sh
and follow the prompts to install.
The installation prompt asks whether you want to "initialize."
-
If you agree to initialize, it will change your default Python environment to the workbench.
-
If you decline, the ML workbench still functions, but you will need to activate the mlworkbench conda environment before launching JupyterLab.
-
Relaunch Terminal for the PATH change to take effect.
-
Run the command
jupyter lab
to start. This starts the Jupyter server and opens JupyterLab in your browser. If you would like to access JupyterLab from a remote browser, typejupyter lab --ip=0.0.0.0 --no-browser
instead.
JupyterLab only has access to the folder where it is launched. If you need to access files at a different location, launch JupyterLab in that location.
To completely uninstall, remove the folder where you installed the workbench, delete the "conda initialized" section in the .zshrc
file in your home directory if you allowed the installer to initialize your system, and remove the $HOME/.jupyter/lab/user-settings/@tigergraph
folder.
Linux installer
-
Download the installer at this link: Download MLWorkbench-1.1.0-Linux-x86_64.sh
-
Open the terminal and navigate to where the installer was downloaded.
-
Run the command
bash MLWorkbench-1.1.0-Linux-x86_64.sh
and follow the prompts to install.
The installation prompt asks whether you want to "initialize."
-
If you agree to initialize, it will change your default Python environment to the workbench.
-
If you decline, the ML workbench still functions, but you will need to activate the mlworkbench conda environment before launching JupyterLab.
-
Relaunch the terminal for the PATH change to take effect.
-
Run the command
jupyter lab
to start. This starts the Jupyter server and opens JupyterLab in your browser. If you would like to access JupyterLab from a remote browser, typejupyter lab --ip=0.0.0.0 --no-browser
instead.
JupyterLab only has access to the folder where it is launched. If you need to access files at a different location, launch JupyterLab in that location.
To completely uninstall, remove the folder where you installed the workbench, delete the "conda initialized" section in the shell profile (normally the .bashrc
file in your home directory) if you allowed the installer to initialize your system, and remove the $HOME/.jupyter/lab/user-settings/@tigergraph
folder.
Next steps
After installation, the next step is to Activate ML Workbench.
You can then go to our Tutorials and Sample Data section. Follow the instructions, use our tutorials and download our latest notebook examples and data sets there to practice using the ML Workbench.